skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Wahl, Jonathan"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Splice type surface singularities were introduced by Neumann and Wahl as a generalization of the class of Pham–Brieskorn–Hamm complete intersections of dimension two. Their construction depends on a weighted tree called a splice diagram. In this paper, we study these singularities from the tropical viewpoint. We characterize their local tropicalizations as the cones over the appropriately embedded associated splice diagrams. As a corollary, we reprove some of Neumann and Wahl’s earlier results on these singularities by purely tropical methods, and show that splice type surface singularities are Newton non-degenerate complete intersections in the sense of Khovanskii. We also confirm that under suitable coprimality conditions on its weights, the diagram can be uniquely recovered from the local tropicalization. As a corollary of the Newton non-degeneracy property, we obtain an alternative proof of a recent theorem of de Felipe, González Pérez and Mourtada, stating that embedded resolutions of any plane curve singularity can be achieved by a single toric morphism, after re-embedding the ambient smooth surface germ in a higher-dimensional smooth space. The paper ends with an appendix by Jonathan Wahl, proving a criterion of regularity of a sequence in a ring of convergent power series, given the regularity of an associated sequence of initial forms. 
    more » « less